Posted on Leave a comment

No One’s Safe Until Everybody’s Safe

5.4.2021

It’s unclear who first made this comment about the Covid-19 pandemic, but it is being used by health care leaders around the world to encourage their people to get the Covid-19 vaccination. Vaccines have played an important role throughout history in keeping us well.

Evidence exists that early attempts to inoculate people against smallpox were reported in China as early as the 16th Century. Smallpox scabs could be ground up and blown into the recipient’s nostrils or scratched into their skin. The practice, known as “variolation”, came into fashion in Europe in 1721, with the endorsement of English aristocrat Lady Mary Wortley Montagu.

The next development which turned out to be much safer than variolation, originated from the observation that dairy farmers did not catch smallpox. The 18th Century English physician, Edward Jenner, hypothesised that prior infection with cowpox, which is a mild illness spread from cattle, might be responsible for the suspected protection against smallpox.

In 1796, Jenner inoculated an eight-year-old boy by taking pus from the cowpox lesions on a milkmaid’s hands and introducing the fluid into a cut he made in the boy’s arm. Six weeks later, Jenner exposed the boy to smallpox, but he did not develop the infection then, or on 20 subsequent exposures. The origin of the term comes from the Latin for cow or “vacca”.

Edward Jenner vaccinating his child against smallpox; coloured engraving.  Image: Wellcome Library, London (CC BY 4.0)
Edward Jenner vaccinating his child against smallpox; coloured engraving. Image: Wellcome Library, London (CC BY 4.0)

In 1881 French microbiologist Louis Pasteur demonstrated immunisation against anthrax by injecting sheep with a preparation containing forms of the organism that causes the disease. Four years later he developed a protective suspension against rabies. Jenner’s approach was to use a virus similar to, but safer than, smallpox to prevent disease. Pasteur on the other hand developed a weakened or attenuated form of the virus or bacteria to treat the patient.  

This was the birth of vaccinations and heralded a new era in the treatment of diseases around the world using injections containing live, weakened, or killed viruses to produce immunity against an infectious disease. In the early 20th century, we saw the development of vaccines to protect against whooping cough (1914), diphtheria (1926), tetanus (1938), influenza (1945) and mumps (1948). Later vaccines were developed for polio (1955), measles (1963) and rubella (1969) with the world being announced smallpox free in 1980.

Vaccine technology still uses the approaches developed by Jenner and Pasteur but has developed enormously in recent years with a number of new approaches. These include:

  • A subunit vaccine, which is made from proteins found on the surface of infectious agents e.g. Influenza, Hepatitis B.
  • Inactivated toxins of infectious organisms e.g., Tetanus, Diphtheria, Whooping cough.
  • Gene sequencing and editing has allowed the mass production of antigens that are used in vaccines and made the production of attenuated vaccines safer and more effective.
  • Recombinant DNA technology has also been used effectively to develop vaccines e.g., Human papillomavirus.

Today there are around 30 diseases around the world that are treated and controlled by vaccination programmes making us all healthier and allowing us to live longer.

So here we are in 2021 and vaccines will once again help us fight against another highly infectious disease, Covid-19. There are currently 10 vaccines licensed around the world that offer protection against Covid-19. Staggeringly, there are 88 vaccines in clinical development and 184 in pre-clinical development.

vaccination-5884513_1920.jpg

The speed of development of these vaccines has been nothing short of remarkable and their efficacy rates are equally impressive. However, public attitudes to vaccines appears to have shifted markedly to what it was when this type of treatment was introduced. People either trust vaccines or they don’t. Then we have the antivaxxers who believe vaccines are unsafe and infringe their human rights. Antivaxxers also use social media to actively spread misinformation to persuade people to their point of view. Antivaxxers have been pumping out misinformation for a number of years now, so it’s useful to see if they have had any success.

Claims about the Covid-19 vaccine made by the antivaxxer community include:

  • The vaccine alters your DNA.
  • The vaccine causes infertility.
  • Bill Gates is inserting microchips into people.
  • The virus is being used as a ploy to move a country to a “police state”.
  • Don’t be a guinea pig for pharmaceutical companies.

A number of surveys have been conducted assessing public reaction to having a Covid-19 vaccination. The Imperial College London YouGov Covid-19 Behaviour Tracker Data Hub gathers global insights on people’s behaviours in response to COVID-19. Data represents the share of respondents who have not received a COVID-19 vaccine and who agree with the following statement: “If a COVID-19 vaccine were made available to me this week, I would definitely get it.” Respondents were presented with a 1 to 5 scale, ranging from “Strongly agree” (1) to “Strongly disagree” (5). The following chart shows monthly data on the willingness of unvaccinated individuals to receive the COVID-19 vaccine. They asked this question in November 2020 with the following results:

imperial-college-of-london-mar-31.png

You can see that in those countries surveyed there is a wide variation in the willingness to be vaccinated ranging from 67% in the U.K. to only 40% in France. A study conducted by Ipsos on behalf of the World Economic forum found similar results.

Is this vaccine hesitancy the result of antivaxxer misinformation? There is no doubt that some of the claims made by antivaxxers will have resonated with some people. However, when you ask people objectively about vaccine hesitancy the reasons are quite straight forward. “Side effects”, “long term effects on health” and “how well the vaccine works” were the top three reasons for reporting negative sentiment towards the vaccine and this was consistent across all population groups. These concerns are not unreasonable. It is important to note that as more and more people are vaccinated, vaccine hesitancy is declining. In fact, in England 95% of the over 50’s have been vaccinated which is way higher than scientists thought could be achieved.

To ensure high rates of vaccination so that a population can gain “herd” immunity, health care leaders need to target vaccine hesitancy messaging very carefully. This is because hesitancy rates vary by population sub-group.

A survey carried out by the Office of National Statistics in the U.K. in early 2021 revealed that vaccine hesitancy was highest in:

  • 16–29 year olds.
  • Black or Black British adults.
  • Parents with child aged 0-4 years.
  • Adults living in the most deprived area.

It’s pretty clear that as vaccine programmes are rolled out around the world, governments and health care workers will have to work hard to ensure the majority of their people are vaccinated. Only then can we stop saying no one’s safe until everybody’s safe and we can start getting back to a normal life and fix some of the other issues this pandemic has caused.

  • We need to be more vigilant against infections, particularly with vulnerable hospitalised patients. That’s why sterile EyePro™ should be the only eyelid cover used to maintain eyelid closure during general anaesthesia or deep sedation.
  • As surgery returns and we start to reduce the huge backlog of patients waiting for routine surgery, hospitals must ensure they deliver a great patient experience by protecting patients’ eyes from trauma by using NoPress™, our foam and rigid plastic shield designed specifically to protect anaesthetised patient’s eyes from externally applied pressure.
  • Enhance the patient experience further, by guarding against dental damage and/or negative pressure oedema through the use of BiteMe™ our purpose designed, air-filled, soft plastic bite block.

So, no one’s safe until everybody’s safe and although vaccines will help the world recover, it’s important we do our utmost to protect patients from infection as well as non Covid-19 complications that can be easily avoided. By using our products, you will optimise your care and ensure your patients have the best experience they can possibly receive.

Author: Niall Shannon, European Business Manager, Innovgas

This article is based on research and opinion available in the public domain.

Posted on Leave a comment

The face mask that could end the pandemic

By Keri Enriquez

Updated 10:24 AM ET, Sat January 23, 2021

 (CNN)Getting Americans masked up is a top priority for the Biden administration.

Biden, who calls wearing masks “a patriotic act,” signed an executive order Wednesday — his very first as President — to ask Americans to wear masks of their choice for the first 100 days of the new administration. The executive order also requires mask use on all federal property, though in this case, not just any old mask will do.

On Wednesday, after the inauguration, White House press secretary Jen Psaki showed off her bright white N95 mask in the press briefing room. “I wore it out, of course, here today and will continue to do that,” Psaki said after removing her medical-grade mask and before turning to questions.

CDC reports record number of daily Covid-19 vaccinations as states struggle with supply

N95 masks are considered the gold standard in personal protective equipment because they block 95% of large and small particles utilizing a unique electrostatic filter.

The filter works by trapping neutral particles like bacteria and viruses before they pass through the mask, protecting the wearer and those around them. It’s similar to how socks might get stuck to a blanket in the dryer. The N95 mask, which costs roughly $5, also fits securely to the face, eliminating most of the leakage that may occur with a loose-fitting cloth or paper mask.

Studies have shown that masks significantly decrease the chances of transmitting or contracting the coronavirus. But not all masks provide equal protection. Depending on the fabric and number of layers, homemade and simple cloth masks have a range of effectiveness that can be as low as 26%, which leaves the wearer vulnerable.

Some experts like Brigham and Women’s Hospital and Harvard Medical School physician Dr. Abraar Karan have been advocating for public use of N95 masks from the start of the pandemic. In an interview with CNN Chief Medical Correspondent Dr. Sanjay Gupta, Karan outlined why N95s are critical at this stage of the pandemic.

“If for four weeks the country essentially wore these masks in those risky settings like that indoors, what kind of difference do you think it would make?” Gupta asked.

“This would stop the epidemic,” Karan responded.

Dr. Gupta on Covid-19: This is the worst it’s ever been 05:46

The quality of protection a face mask can provide is crucial. A respiratory illness like the coronavirus is transmitted through aerosols, tiny particles that waft and hang in the air. Some virus-carrying particles are small enough to travel through or around lower-quality masks, making the wearer vulnerable to inhalation of viral particles.

“We know now that aerosols spread best when there is poor ventilation, crowding and close contact that’s prolonged,” Karan told Gupta in an interview. “So we were arguing that actually in those settings, cloth masks alone are not going to block aerosols.”

Karan is not the only expert who has been vocal in support of better quality masks for the general public. Former US Food and Drug Administration Commissioner Dr. Scott Gottlieb wrote in an op-ed in the Wall Street Journal that “encouraging Americans to wear higher-quality masks is a simple step that might make a difference.”

The biggest problem is lack of supply. This week marked a full year of the coronavirus, and the Biden administration has committed to invoking the Defense Production Act more often to boost manufacture of N95 masks and other critical supplies. Experts hope manufacturing will hit a speed to be able to sufficiently supply the population.

“An N95 that’s well-fitted clearly is the best that you can do,” National Institute of Allergy and Infectious Diseases Director Dr. Anthony Fauci told CNN Friday. “You could get production of that at a much higher rate now.”

Karan believes N95 masks could be an essential asset in reopening the economy as the vaccine rollout remains sluggish and quarantine fatigue soars.

The huge stakes of Biden’s new Covid-19 plan

“If we have better personal protection for people, they can more safely go back to work. They can more safely re-engage, especially if testing and tracing is not where we need it to be,” Karan said.

“This was going to be one way to get people back in and get the economy back up.”

Some European countries are already taking that step to prevent coronavirus spread within their borders. Earlier this week, Germany and France mandated that all citizens wear high filtration masks like the N95 in all public places.

After months of treating coronavirus patients, Karan says it’s time to invest in making sure masks people wear are even more effective. “Focus on getting better masks to as many people as possible, focus on the messaging around masks, be consistent with your messaging, make masks part of American culture to stop the epidemic.”

The key here is to always wear a mask whenever you’re in public. One study in Lancet Digital Health found that a 10% increase in mask-wearing could lead to a three-fold increase in the odds of maintaining control over virus transmission in a community. The ability to control the spread of the coronavirus is in our hands — and on our faces.

Original Article Viewed Here

Posted on Leave a comment

Novaerus Defend 1050 air purifier approved by FDA as 510(k) Class II Medical Device

Novaerus Defend 1050 cleared by FDA as 510(k) Class II Medical Device to inactivate and filter out airborne virus and bacteria for medical purposes

Defend 1050 uses patented NanoStrike® technology to damage and inactivate airborne micro-organisms.

Dublin, Ireland and Stamford, CT – Novaerus, a WellAir company that delivers clean air solutions to help prevent the spread of infectious outbreaks, announced today that the U.S. Food and Drug Administration (FDA) cleared the Novaerus Defend 1050 (NV 1050) as a 510(k) Class II Medical Device to inactivate and filter out micro-organisms, including virus and bacteria, for medical purposes. The Novaerus Defend 1050 is the first system that uses NanoStrike®, a patented plasma generating technology, to receive FDA 510(k) clearance.

The Novaerus Defend 1050 is a free-standing, portable recirculating air cleaning system designed for additional frontline protection in healthcare settings such as operating rooms, intensive care units, in vitro fertilization labs, emergency rooms, waiting and treatment areas, neonatal units, and other critical environments including those performing aerosol-generating medical procedures (AGMP).

The Defend 1050’s NanoStrike technology uses a plasma field that rapidly inactivates micro-organisms at the molecular level. Within 15 minutes, the Defend 1050 has demonstrated a 4-log (99.99%) reduction of the MS2 bacteriophage RNA virus, an accepted surrogate for SARS-CoV-2. The Defend 1050 also showed a 4-log (99.99%) reduction in Bacillus Globigii endospores (bacterial spores) within 15 minutes, which was maintained over the prolonged operation (24 hours).

The Defend 1050 is currently used in hospitals and healthcare settings worldwide. Given the rapid spread of COVID-19, WellAir moved quickly to understand how this device could potentially combat the virus while moving it through a thorough FDA medical device clearance process. Additionally, the Defend 1050 meets relevant performance criteria in the FDA Guidance, which provides non-binding recommendations that may reduce the risk of viral exposure for patients and healthcare providers during the current public health emergency.

“Our team of outstanding engineers and scientists have been focused on delivering innovative and powerful airborne infection control devices. The FDA clearance on the Defend 1050 is a critical milestone for our company, validating our work to deliver a safe and effective medical device,” said Dr Kevin Devlin, WellAir CEO. “The Defend 1050 has demonstrated tremendous efficacy in third party testing against viruses, bacteria, VOCs, and particulate matter, which makes it an ideal solution for hospitals and healthcare settings. As we continue to see an alarming rise in the number of COVID-19 cases, we have moved quickly to make the device readily available.”

Defend 1050 utilizes multiple stages to reduce airborne micro-organisms. The first stage is a general air pre-filter that captures particles between 4 and 10 microns from the input airflow. This filtered air passes through a series of NanoStrike coils (plasma generators) that damage and inactivate micro-organisms on contact, including viruses and bacteria. The resulting inactive particulates are trapped by a HEPA (High-efficiency Particulate Air) filter. In a final cleaning stage, an activated carbon filter traps VOCs in the airstream before the air is released into the environment.

The Defend 1050 system is delivered complete with all components necessary for immediate use. It can be wheeled easily by a single person to the desired point of use and plugs into standard outlets. Five airflow speed settings enable optimization to each healthcare environment. The only routine maintenance required is a calendar-based filter change schedule.

If you are a medical or healthcare facility interested in learning more about the Novaerus Defend 1050 or other Novaerus products, additional information can be found here, or please contact us

Posted on Leave a comment

Xavant Technology Announces First Dual-Sensor Neuromuscular Patient Monitor

The Stimpod NMS450X NMT monitor for Anesthesia first to feature both AMG and EMG modalities in one single, portable patient monitoring system.  

Pretoria, South Africa, October. 15, 2019 – Xavant Technology, a pioneer in neuromuscular monitoring and innovative neuromodulation modalities, announced an addition to the company’s newest generation of Stimpod neuromuscular transmission monitor – the capability of utilizing either of the two most industry prominent types of monitoring sensors, AMG and EMG. The new Stimpod system and EMG sensor accessory will be exhibited at the American Society of Anesthesia (ASA) Annual Meeting, October 19-21 in Orlando, Florida alongside the company’s entire Stimpod portfolio for anesthesia.

“We are excited to announce the EMG modality to our Stimpod line of monitors,” stated Corlius Birkill, CEO of Xavant Technology. “By offering, for the first time, anesthesiologists and clinicians a choice in using either AMG or EMG, we can give them unparalleled clinical and budgetary benefits.” Mr. Birkill continued, “We believe quantitative or objective monitoring of patients who are undergoing neuromuscular block for surgery should be the standard of care. Our goal is to provide physicians with the most optimal and efficient tools to achieve that standard.”

The latest update to the AMG-based Stimpod NMS450X monitor series will enable the use for the first time ever, a dual sensor objective neuromuscular transmission monitor that enables anesthesiologists the choice of using either acceleromyography (AMG) with a reusable sensor or electromyography (EMG) with a disposable sensor to manage patients undergoing neuromuscular block during surgery or while being cared for in the intensive care unit.

By adding an EMG sensor accessory to the Stimpod, clinician opportunities in monitoring will be maximized. Being able to choose either AMG or EMG at site of service, hospitals can perform cost-effective entire-surgery monitoring with the platform that is optimal for that specific case. While AMG is a proven, accurate and cost-effective technology, the EMG sensor will simplify how clinicians monitor patients in more restrictive surgical cases, such as robotic surgery where restricting the hands is common. The EMG accessory is pending FDA clearance.

“The Stimpod NMT monitor is simple and economical way for hospitals to drive patient safety, Operating room, PACU, and ICU efficiency, and manage their very expensive paralytic and recovery drug budgets,” stated Xavant Chairman Roche van Rensburg. “We believe the data is fairly conclusive that hospitals can enhance safety outcomes related to residual neuromuscular block by utilizing objective NMT monitoring. But also important is the power to more effectively manage the time and cost-of-care efficacy for the hospital – we believe the Stimpod system can make a tremendous positive difference on both fronts,” added Mr. van Rensburg.

About Xavant Technology

By Xavant Technology October 17, 2019

Posted on Leave a comment

Novaerus NanoStrike Airborne Disinfection Technology

Novaerus NanoStrike Airborne Disinfection Technology

  • Table Top for Smaller Rooms ~120 sq. ft., NV200 delivers 50 CFM(Cubic Feet per Minute) airflow.
  • Wall Mountable, Pedestal Mounted or Roll Stand Mounted options for Medium Rooms ~900 sq. ft., NV900 delivers 150 CFM(Cubic Feet per Minute) airflow at fan speed 1 and 180 CFM at fan speed II.
  • Standalone for rapid remediation for larger common areas with a triple-stage Camfil filter, ~3,000 sq. ft., NV1050 delivers 533 CFM(Cubic Feet per Minute) airflow.
  • Novaerus NanoStrike Airborne Disinfection Technology protects against airborne viruses and bacteria. Nanostrike is the core, patented technology that uses Novaerus plasma-based technology killing all airborne microoganisms on contact providing protection against viruses and bacteria.

NanoStrike patented technology destroys viruses, microorganisms and bacteria at the DNA level:

  • Plasma coils create energy field that kills ALL germs and pathogens in sub-second time.
  • 99.9+% effective at eliminating Influenza pathogens, SARS-Cov-2(Covid-19), and MRSA
  • Kills ALL airborne microorganisms at the DNA level as small as 1 nanometer!
  • Total cell destruction ensures cells do not become viable as an infectious agent ever again.
  • Continuous 24/7 air disinfection and odor control with no disposables
  • Lowest cost of ownership operating 24/7 with no supplies needed for NV200 or NV900.
  • Plugs into standard power outlets plus wall mounts, pedestal stand or roll stand options
  • Independently tested and proven for use in ORs, ICUs, ED, Offices, Restaurants, etc.

 How does NanoStrike Protect?

NanoStrike utilizes an atmospheric plasma discharge like a lightning strike to kill and deactivate harmful airborne microoganisms.  NanoStrike plasma coils provide a deadly strike made up of multiple concurrent processes that work to rapidly destroy airborne pathogens.  The result is total destruction of all airborne pathogens! 

NanoStrike plasma coils create an electrostatic field bombarded by electroporation and electromagnetic field radiating heat and UV radiation in sub-second time to force cells down to one nanometer to explode with osmotic pressure resulting in total destruction of airborne pathogens. 

Novaerus does not filter virus and bacteria cells from the air it destroys them to the point of total destruction with no chance of reactivation or self-healing. 

NanoStrike can protect humans in hospitals, senior living facilities, long term care facilities, schools, locker rooms, casinos, railway stations, residences, hotel common areas, offices, manufacturing, meat processing plants and virtually any indoor environment where people gather.   

Breathe easy with Bell Medical and NanoStrike Technology.

Posted on Leave a comment

Measures to Control the Transmission of Covid-19

Ever since the first reports of Covid-19 in China (1) there has been a great deal of focus on how the virus spreads.

 It is now clear that, the virus causing COVID-19, is primarily transmitted between people through respiratory droplets and contact routes.

Droplet transmission occurs when a person is in close contact (within 1 m) of someone with respiratory symptoms (e.g. coughing or sneezing) and is therefore at risk of having their mucosae (mouth and nose) or conjunctiva (eyes) exposed to potentially infective respiratory droplets. Transmission may also occur through fomites in the immediate environment around the infected person. Therefore, transmission of the COVID-19 virus may occur by direct contact with infected people and indirect contact with surfaces in the immediate environment or with objects used on the infected person. (2) Studies from a variety of disciplines investigating viruses clearly support the following:

  • most respiratory and enteric viruses can survive on fomites and hands for varying lengths of time.
  •  fomites and hands can become contaminated with viruses from both natural and laboratory sources.
  •   viral transfer from fomites to hands is possible.
  •   hands come in contact with portals of entry for viral infection.

 If viruses remain viable on surfaces long enough to come into contact with a host, the virus may only need to be present in small numbers to infect the host. (3)

The virus can also be spread via airborne transmission which is different to droplet transmission. This refers to the presence of microbes within droplet nuclei. Droplet nuclei are generally considered to be particles ≤ 5μm in diameter that can remain in the air for longer periods of time and can be transmitted to others over distances greater than 1 metre. Airborne transmission of the COVID-19 virus is possible under circumstances and settings where aerosol generating procedures (AGPs) are performed. (2)

We are all aware of the measures that are being taken in the community to prevent the transmission of the virus via the droplet and contact routes. (4) But what is happening in hospitals; particularly when a patient needs emergency surgery or, as is now happening an elective or planned procedure?

In planned procedures the patient should isolate for several days and test negative for Covid-19 before entering theatre. Emergency patients are identified as symptomatic or asymptomatic and appropriate Infection Prevention and Control procedures are put in place. (5)

Much is being done in hospitals generally and more specifically in operating theatres to reduce transmission rates. While the rates of overall infection in a country may be below 1%, (6) in hospitals the rates could be anywhere between 5% and 15%. (7)

So, what more could be done in hospitals to bring the rates of infection down? In my opinion, whilst some effort is being made to reduce fomite spread of covid-19 in the operating theatre with regular disinfection and greater use of single use items, much more could be done. (8,9)

Rolls of medical tape are often to be found in the operating theatre. Studies have shown that 51 % of rolls of tape found lying around in theatre may have VRE or MRSA, so multiple resistant bacterial organisms on them, which we then apply to patients. (10) These rolls of tape may well have Covid-19 on them and if applied to the patient’s eyes may well infect them.

It would be far safer, and better practice to use our sterile, single use EyePro™ to cover the patient’s eyes (11) thereby removing a potential Covid-19 transmission route.

Many theatres make up their own bite blocks using gauze and rolls of tape on the anaesthetic trolley. All this activity carries a high risk of fomite transmission. If you use a single wrapped clean BiteMe™ with clean gloves, BiteMe™ should pose less risk compared to rolled up gauze with respect to viral transmission. (12)

Thus, by making two small changes to operating theatre procedures you could be doing so much more to reduce the potential transmission of Covid-19.

  • Use sterile single use EyePro™, the only sterile eyelid occlusion dressing available and stop using medical tape on your patient’s eyes.
  • Use single use, clean BiteMe™ as your bite block of choice and stop making your own bite blocks.

Dr Andrew Wallis

BSc., BMedSci., MBBS (hons), FANZCA

Private Anaesthetist

Member of Medical Advisory Committee, Calvary Hospital, Launceston, Tasmania.

Medical Director Innovgas Pty Ltd

References:

  1.  Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 16-24 February 2020. World Health Organisation.
  2.  Infection prevention and control during health care when coronavirus disease (COVID-19) is suspected or confirmed. Interim guidance 29 June 2020. World Health Organisation
  3. S. A. Boone* and C. P. Gerba. Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease. Applied and Environmental Microbiology, Mar. 2007, p. 1687–1696.
  4. Transmission of SARS-CoV-2: implications for infection prevention precautions. Scientific brief 09 July 2020. World Health Organisation.
  5. Operating framework for urgent and planned services in hospital settings during COVID-19. 14 May 2020. NHS England.
  6. COVID-19 situation update for the EU/EEA and the UK, as of 14 July 2020. European Centre for Disease Prevention and Control.
  7. G. Iacobucci. Covid-19: Doctors sound alarm over hospital transmissions. BMJ 2020;369. 19 May 2020.
  8. Infection prevention and control and preparedness for COVID-19 in healthcare settings. Third update – 13 May 2020. European Centre for Disease Prevention and Control.
  9. COVID-19: infection prevention and control guidance. 21st May 2020. NHS England.
  10.  Harris PN et al. Adhesive tape in the health care setting: another high-risk fomite? Med J Aust. z2012;196(1):34.
  11.  EyePro™ Brochure.
  12.  BiteMe™ Brochure.
Posted on Leave a comment

Anesthesia Hygiene – Infectious Control

Anesthesia Machine Covers Prevent Infections!


Guidance issued by Society for Healthcare Epidemiology of America (SHEA): “…explore the use of disposable covers”

Anesthesia Hygiene machine covers have tear away pouches that hold and contain contaminated supplies such as laryngoscopes and yankauer suction! The use of disposable covers is endorsed by SHEA and ASPF.

Anesthesia Hygiene Covers protect your patient and your anesthesia machine from pathogens and infectious diseases. To view videos and more information on our webpage Anesthesia Hygiene Covers and anesthesiahygiene.com .